

Mathematics

Quarter 1 – Module 4: Solving Problems Involving Factors, Multiples and Divisibility Rules

GOVERNMENT PROPERTY
NOT FOR SALE

What I Need to Know

Hi, Mathlete!

In this module, you will learn how to solve routine and non-routine problems involving factors, multiples and divisibility rules for 2, 3, 4, 5, 6, 8, 9, 10, 11, and 12. This will help you find easier the factors of a big number by just looking at its digits.

When you are done with this module, you will be able to:

- solve routine and non-routine problems involving factors, multiples, and divisibility rules for 2, 3, 4, 5, 6, 8, 9, 10, 11, and 12.

What I Know

Directions: Solve the problem below using the four-step plan. Use a separate sheet of paper or your Math Activity Notebook.

The pupils of Grade 5-Slate are having an experiment on the germination of seeds on different types of soil. One group received 36 mongo seeds and 33 corn seeds. They placed both the mongo and corn seeds into small pots such that seeds of the same types were divided equally into the small pots. How many small pots will they use for each kind of seed?

1. Understand

a. Know what is asked:

b. Know what are given:

2. Plan

c. Determine the operation/ method/ procedure to be used.

3. Solve

d. Use the method to solve the problem

4. Check and Look Back

e. Check your answer

Lesson 1

Solving Routine and Non-routine Problems Involving Factors, Multiples, and Divisibility Rules for 2, 3, 4, 5, 6, 8, 9, 10, 11, and 12

A divisibility rule is a simple way of determining whether a given number is divisible by another number. It can be used to quickly find the factors of given numbers. “Divisible by another number” means a number can be divided by another number without any remainder.

What's In

In the previous module, you have learned how to find common factors by understanding the divisibility rules.

By looking at the digits of a large number or by doing simple calculations, you can easily tell whether a number is a factor of a given number. Remember that a number is divisible by:

- 2 – if it is even and ends in 0, 2, 4, 6, or 8

Example: 106 is divisible by 2 because it ends in 6.

- 3 – if the sum of the digits of the number is divisible by 3

Example: 315 is divisible by 3 because $3 + 1 + 5 = 9$ and 9 is divisible by 3.

- 4 – if the number formed by its last two digits is divisible by 4.

Example: 612 is divisible by 4 because the number formed by its last two digits is 12, which is divisible by 4.

- 5 – if its ones digit is either 0 or 5

Example: 487 580 is divisible by 5 because it ends in 0.

- 6 – if it is divisible by 2 and 3

Example: 5 652 is even. The sum of its digits is $5 + 6 + 5 + 2 = 18$, which is divisible by 3. So, 5 652 is divisible by 6 because it is divisible by both 2 and 3.

- 8 – if the number formed by its last three digits is divisible by 8.

Example: 913 824 is divisible by 8, because the number formed by its last three digits is 824, which is divisible by 8.

- 9 – if the sum of its digits is divisible by 9.

Example: 9 684 is divisible by 9 because the sum of all its digits is $9 + 6 + 8 + 4 = 27$, and 27 is divisible by 9.

- 10 – if its ones digit is zero

Example: 850 is divisible by 10 because 850 ends in 0.

11 – if the difference of the sum of the odd-positioned digits (starting from the left) and the sum of the even-positioned digits (starting from the left) is zero or if it is a multiple of eleven.

- **Examples:** 2 376 is divisible by 11, because $(2 + 7) - (3 + 6) = 0$.

76 813 is divisible by 11, because $(7 + 8 + 3) - (6 + 1) = 11$, which is a multiple of 11.

- 12 – if the sum of its digits is divisible by 3 and the number formed by its last two digits is divisible by 4.

Example: 324 is divisible by 12 because the sum of all its digits is $3 + 2 + 4 = 9$, which is divisible by 3. Also, the number formed by its last two digits is 24, which is divisible by 4.

Do the activity below:

Directions: Determine whether or not the given numbers are divisible by the number in each column. Put a check (✓) on the appropriate column. Number 1 is already done for you. Use your Math Activity notebook to answer this.

Number	Divisible by									
	2	3	4	5	6	8	9	10	11	12
1. 5 814	✓	✓			✓		✓			
2. 81 235										
3. 3 285										
4. 34 281										
5. 11 255										

What's New

Study the problem below

Malopalo Elementary School is set to conduct a tree planting activity on September 1, 2020. All Grade 5 boys are expected to plant 50 seedlings, and the Grade 5 girls are to plant 30 seedlings. They will plant the seedlings in such a way that the trees will grow in equal numbers per row. What is the possible common number of trees in each row?

What Is It

There are two types of word problems you may encounter. It could be:

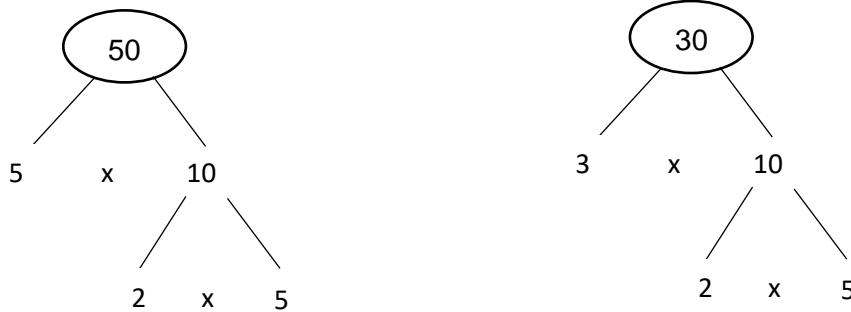
- ❖ *Routine problems* that are useful for daily living; or
- ❖ *Non-routine problems* which are mostly concerned with developing mathematical reasoning and fostering an understanding that mathematics is a creative endeavor.

To answer the problem above, we can apply the Polya's technique in solving word problem:

1. Using POLYA'S four-step plan

a. **Understand:**

- Know what is asked
The common number of trees in each row
- Know what are given
50 seedlings of boys
30 seedlings of girls


b. **Plan:**

- Determine the operation/method/procedure to be used
Find the common factors by factor tree method

c. **Solve:**

- Use any method to solve the problem
Find the common factors of 50 and 30

1. By using Factor Tree technique

So, the common factors of 50 and 30 are 2, 5, and 10

$$50 = 2 \times 5 \times 5$$

$$25 \times 2$$

$$10 \times 5$$

$$50 \times 1$$

$$30 = 2 \times 3 \times 5$$

$$15 \times 2$$

$$5 \times 6$$

$$10 \times 3$$

$$30 \times 1$$

2. By listing the factors

$$50 = 1, \boxed{2}, \boxed{5}, \boxed{10}, 25, 50$$

$$30 = 1, \boxed{2}, 3, \boxed{5}, 6, \boxed{10}, 15, 30$$

Therefore, the listing method can be used also in getting the common factors of 50 and 30 which are divisible by 2, 5, and 10.

3. The Table Method

Number of Seedlings	Can trees be planted equally in a row by						
	2?	3?	4?	5?	6?	8?	10?
50 for boys	/	x	x	/	x	x	/
30 for girls	/	x	x	/	x	x	/

Answer: The possible common numbers of trees in each row are 2, 5, and 10.

d. Check and Lookback:

Check if 50 and 30 are divisible by 2, 5, and 10

$$50 \div 2 = 25$$

$$30 \div 2 = 15$$

$$50 \div 5 = 10$$

$$30 \div 5 = 6$$

$$50 \div 10 = 5$$

$$30 \div 10 = 3$$

Let's have another example

Delfin is willing to give a reward to whoever guesses his age this year. His clues state that his age is divisible by 12 and is multiple of 9, and that he is less than 51 years old. How old is Delfin.

a. Understand

- What is asked?
The age of Delfin this year
- What are given?
Age is divisible by 12
Age is multiple of 9
Age is less than 51

b. Plan

- What strategy can we use to solve this problem?
Since there are just a few numbers less than 51 which are divisible by 12 and 9, we will use Listing Method and Elimination

c. Solve

Delfin's age is less than 51, so our range is from 1-50, Listing all numbers divisible by 12 within that range, we have

12, 24, 36, 48

Another clue is that his age is a multiple of 9. Among the four numbers, we can eliminate 12, 24, and 48 because the only number that is multiple of 9 is 36.

Answer: Therefore, Delfin's age is 36

d. Check and look back

We check if our answer satisfies the clues provided by Delfin

- 36 is divisible by 12
- 36 is a multiple of 9
- 36 is less than 51

What's More

Directions: Solve the following problems involving factors, multiples, and divisibility rules for 2, 3, 4, 5, 6, 8, 9, 10, 11, and 12.

- 1) Ruben is arranging 648 tiles fitted a bathroom. He wants to put the same number of tiles on each row. How many tiles can Ruben put on each row?
A. 5 B. 11 C. 10 D. 12
- 2) Tessa is organizing 990 blocks into boxes at the toy store. She needs to put the same number of blocks in each box without any leftover blocks. How many boxes would Tessa use for the blocks?
A. 4 B. 10 C. 12 D. 8
- 3) Around 420 players joined in the volleyball tournament. Each team should have the same number of players. How many players could there be on a team?
A. 8 B. 9 C. 11 D. 12
- 4) David's little sister is playing with blocks. She wants to put all 63 of her blocks into stacks with the same number of blocks in each stack. How many blocks could David's sister put into a stack?
A. 4 B. 6 C. 9 D. 10

What I Have Learned

After going through this module, I have learned that:

Solving word problems involving factors, multiples, and divisibility rules for 2, 3, 4, 5, 6, 8, 9, 10, 11, and 12 is done using the 4-step process.

Understand:

- Know what is asked.
- Know the given facts.
- If any, determine the question.

Plan:

- Determine the operation to be used.
- Write the number sentence.

Solve:

- Use the operation in solving

Check and Look Back:

- Write the correct answer.

Non-routine problems can be done without using a standard procedure. They can be solved by drawing a picture, using a number line, acting-out, making a table, and many others.

You may want to take a look at these sample problems from <https://nrich.maths.org/> then write or create the word problems for this LC various problem solving techniques may be presented:

Charlie want to buy a new house but he doesn't like numbers that are divisible by 3 or by 5. If all the houses numbered between 100 and 150 are inclusive for sale, how many houses can he choose from? (<https://nrich.maths.org/10154>)

What is the biggest three digit multiples of two that you can think of that uses the digits 5 and 8?

What is the largest possible five-digit number divisible by 12 that you can make from the digits 1, 3, 4 and 5 and one more digit? (<https://nrich.maths.org/dozens/solution>)

What I Can Do

Directions: Solve the following problems. Use a separate sheet of paper.

1. Joseph planted 600 onions equally in 20 rows. How many onions were planted in each row? If Joseph decided to plant at least 10 onions in each row will still be distributed equally?

Understand:

Plan:

Solve:

Check and look back:

2. Jerry and Henry love playing marbles. Jerry has 60 marbles while Henry has 80 marbles. They plan to keep their marbles in a clay jar. How many possible groups will there be if they are going to put them equally inside the clay jar respectively? Put a star \star if the number is divisible of the given number.

Number of Marbles	Can marbles be put in a clay jar equally by										
	2?	3?	4?	5?	6?	8?	9?	10?	11?	12?	20?
Jerry has 60											
Henry has 80											

Assessment

Directions: Solve the following problems involving factors, multiples, and divisibility rules for 2,3,4,5,6,8,9,10,11, and 12. Write the letter of the correct answers on your answer sheet.

- Ralph needs to set up 20 chairs for a mini concert. He wants to put the same number of chairs in each row with no chairs left. How many chairs could he put in a row?

A. 9 B. 3 C. 6 D. 5
- Editha wants to arrange 124 roses into vases. How many roses could she put in each vase without having any leftover roses?

A. 10 B. 4 C. 5 D. 6
- There are 632 guavas in the jars in a pantry. If each jar contains the same number of guavas, how many jars would there be?

A. 4 b. 10 c. 3 d. 9
- A slipper factory needs to ship an order of 620 pairs. The factory will ship the slippers in several boxes. Each box must contain the same number of pairs of slippers. How many boxes could the factory use for the order?

A. 6 B. 9 C. 10 D. 3
- A warehouse contains 6 432 boxes of milk, and each row has the same number of boxes. How many rows could there be?

A. 9 B. 3 C. 5 D. 10

Additional Activities

Directions: Solve the problem below.

Mrs. Velasco plans to arrange 27 boys and 18 girls in rows for her seat plan. She wishes to arrange them in such a way that only boys or girls will be there in a row. Find the common number of students that could be arranged in a row.

Solution to the problem:

1. Using the four-step plan (Routine)

- a. Understand:

Know what is asked _____

Know what are given _____

- b. Plan:

Determine the operation/ method/ procedures to be used

- c. Solve:

Use the method to solve the problems _____

- d. Check and look back: _____

Answer Key

What I Know

Using the 4-step plan

Understand: a. Know what is asked: Common number of small pots. b. Know what are given: 36 monago seeds, 33 corn seeds

Plan: c. Determine the operation/method/procedure to be used: Find the common factors by listing factors of 33 = 1,3,11,33

Solve: d. Use the method to solve the problem: By listing the common factor of 33 and 36 is 3

Check and Look back

e. Check if the solution is correct

What's In

1. $5, 814 = 2, 3, 6, 9$
2. $81, 235 = 5, 11$
3. $3, 285 = 3, 5, 9$
4. $34, 281 = 3, 9$
5. $11, 255 = 5$

What I Can Do

Asked: Number of onions planted in a row

Given: 600 onions, 20 rows

Solution: $600 \div 20 = 30$

Check: $20 \times 30 = 600$, therefore, there are 30 onions planted in a row.

Assessment

1. D
2. B
3. A
4. C
5. B

Problem 1

Asked: Number of onions planted in a row

Given: 600 onions, 20 rows

Solution: $600 \div 20 = 30$

Check: $20 \times 30 = 600$, therefore, there are 30 onions planted in a row.

Problem 4-5:

Jerry (60) = 2, 3, 4, 5, 6, 10, 12, 20
Henry (80) = 2, 4, 5, 8, 10, 20

Using the 4-step plan

Understand: a. Know what is asked: Common number of small pots.

Plan: b. Know what are given: 36 monago seeds, 33 corn seeds

Solve: c. Determine the operation/method/procedure to be used: Find the common factors by listing factors of 33 = 1,3,11,33

Check and Look back

What's More

1. D
2. B
3. A
4. C
5. B

$$27 \div 9 = 3 \quad 18 \div 9 = 2$$

$$27 \div 3 = 9 \quad 18 \div 3 = 6$$

divisible by 3 and 9.

Check/Lookback: 27 and 18 are

and 9.

Therefore, common factors are 3

$$18 = 1, 2, 3, 6, 9, 18$$

$$27 = 1, 3, 9, 27$$

Solve/Solution: Listing the factors:

listing

Plan:

Find the common factors by

Given: 27 boys and 18 girls

to be divided in a row

Asked: Common number of students

Understand:

Using the four-step plan

Additional Activities